Route to Pyrazolo[5,1-*a*]isoquinolines via a Copper-Catalyzed Tandem Reaction of 2-Alkynylbromobenzene with Pyrazole

Xiaolin Pan,[†] Yong Luo,[†] and Jie Wu^{*,†,‡}

[†]Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China

[‡]State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

R1_

Supporting Information

ABSTRACT: A copper-catalyzed tandem reaction of 2alkynylbromobenzene and pyrazole is described that provides a facile route to pyrazolo[5,1-*a*]isoquinolines in good yields. During the reaction process, copper(I)-catalyzed hydroamination and C–H activation are involved.

C urrently, there is a great demand for access to natural product-like compounds in the field of chemical biology and drug discovery.^{1,2} Among the privileged scaffolds constructed, continuous interest has been focused on pyrazolo-[5,1-a] isoquinolines due to their promising biological activities.^{3,4} For instance, pyrazolo[5,1-a] isoquinoline derivatives show activities for inhibition of CDC25B, TC-PTP, and PTP1B.^{4b} Additionally, in our preliminary biological evaluations, several compounds were found to be active for inhibition of cervical carcinoma. In our continuous efforts for the generation of diverse pyrazolo[5,1-a] isoquinolines with an expectation of finding more active compounds.

Tandem reaction is regarded as a powerful approach for the formation of complex heterocycles.5 The advantages and efficiency of tandem reaction have been well recognized. Recently, we and others identified that 2-alkynylbromobenzene was a useful building block for the generation of polycyclic molecules.^{6,7} On the basis of this result, we conceived that pyrazolo [5,1-a] isoquinoline would be produced via a transitionmetal-catalyzed tandem reaction of 2-alkynylbromobenzene with pyrazole. The proposed synthetic route is described in Scheme 1. We hypothesized that the reaction would proceed through a transition-metal-catalyzed hydroamination and C-H activation.⁸ The transformation seems feasible on the basis of the previous results, since Verma and Larock reported the generation of indolo- and pyrrolo[2,1-a]isoquinolines via a copper(I)-catalyzed reaction of 2-alkynylbromobenzene with indole or pyrrole.⁹ However, there are still some challenges for this reaction between pyrazole and 2-alkynylbromobenzene. For instance, the direct coupling of 2-alkynylbromobenzene 1 and pyrazole 2 would easily lead to the formation of C-N bond¹⁰ which should be excluded in our protocol. Moreover, C-H activation of pyrazole is usually catalyzed by the palladium catalyst, with only two examples of copper catalyst reported. For example, Daugulis and Xi reported the coppercatalyzed arylation of arenes via C-H bond activation independently.¹¹ Compared with the palladium catalyst,

Scheme 1. Possible Mechanism for the Proposed Synthetic Route to Pyrazolo[5,1-a]isoquinolines via a Copper-Catalyzed Tandem Reaction of 2-Alkynylbromobenzene with Pyrazole

Cul (10 mol %

NHC (10 mol %)

2,6-diethylaniline

KOH, DMSO

110 °C

copper(I) salts obviously would be more attractive. We envisioned that the transformation would be possible if the copper(I) salt could serve as the catalyst for the subsequent C– H activation as well. With these results in mind, we proposed that a copper(I)-catalyzed hydroamination of 2-alkynylbromobenzene with pyrazole would occur to generate compound A.¹² Subsequently, an oxidative addition of Cu(I) to aryl bromide **A** would afford intermediate **B**, which would undergo intramolecular attack with the subsequent deprotonation of pyrazole

Received:
 March 23, 2013

 Published:
 May 20, 2013

Table 1. Initial Studies for the Copper-Catalyzed Reaction of 2-Alkynylbromobenzene 1a with Pyrazole 2a

$H_{L1} = L_2 = Cul (10 \text{ mol }\%)$ $Ligand (10 mo$					
			Et Et N ⁺ N Et C ⁻ Et L8	iPr iPr N ⁺ N iPr ^{Cl} iPr L9	J
entry	[Cu]	ligand	base	solvent	yield ^a (%)
1	CuOTf	L1	^t BuOK	DMF	NR
2	Cu ₂ O	Ll	^t BuOK	DMF	trace
3	CuCl	L1	^t BuOK	DMF	14
4	CuI	Ll	^t BuOK	DMF	15
5	CuI	L1	^t BuOK	toluene	NR
6	CuI	L1	^t BuOK	dioxane	NR
7	CuI	L1	^t BuOK	NMP	NR
8	CuI	L1	^t BuOK	DMSO	34
9	CuI	L1	КОН	DMSO	40
10	CuI	L1	^t BuONa	DMSO	33
11	CuI	L1	^t BuOLi	DMSO	34
12	CuI	L1	NaH	DMSO	28
13	CuI	L2	КОН	DMSO	43
14	CuI	L3	КОН	DMSO	39
15	CuI	L4	КОН	DMSO	30
16	CuI	L5	КОН	DMSO	41
17	CuI	L6	КОН	DMSO	45
18	CuI	L7	КОН	DMSO	45
19	CuI	L8	КОН	DMSO	51
20	CuI	L9	КОН	DMSO	46
21 ^b	CuI	L8	КОН	DMSO	65
22 ^b	CuI		КОН	DMSO	40

^aIsolated yield based on pyrazole **2a**. ^bIn the presence of 2,6-diethylaniline (10 mol %).

ring to produce intermediate C. Reductive elimination of intermediate C would furnish the expected pyrazolo[5,1-a]isoquinoline 3. Encouraged by the previous results as mentioned above, we began to explore this copper-catalyzed tandem reaction of 2-alkynylbromobenzene 1 and pyrazole 2.

For the model reaction, 2-alkynylbromobenzene 1a with pyrazole 2a was adopted. The preliminary screening for the reaction was performed in the presence of copper(I) catalyst (10 mol %) at 110 °C (Table 1). Various copper sources were screened first, but only a trace amount of product was observed when the reaction occurred in the presence of L1 (20 mol %), Cu₂O, and *t*-BuOK in DMF at 110 °C (Table 1, entry 2). No reaction took place when the copper salt was changed to CuOTf (Table 1, entry 1). The reaction could proceed leading to the desired product 3a in 14% yield catalyzed by copper(I) chloride in the presence of ligand L1 and *t*-BuOK in DMF (Table 1, entry 3). No reaction occurred in a control experiment without the addition of ligand L1 (data not shown in Table 1). A similar yield was obtained when the catalyst was changed to copper(I) iodide (Table 1, entry 4). The reaction could not proceed when the solvent was changed to toluene, 1,4-dioxane, or NMP (Table 1, entries 5-7). Interestingly, the yield was improved when the reaction was performed in DMSO, giving rise to the corresponding product 3a in 34% yield (Table 1, entry 8). Subsequently, different bases were examined, which identified that potassium hydroxide was the best choice (40% yield, Table 1, entry 9). With these results in hand, we next screened various ligands. To our delight, the desired product 3a was obtained in 51% yield when N-heterocyclic carbene L8 was employed in the reaction as a ligand (Table 1, entry 19). However, other ligands (such as X-Phos) were ineffective in this reaction. After careful investigation, we found that the addition of 10 mol % of 2,6diethylaniline would increase the final outcome of the reaction, which afforded compound 3a in 65% yield (Table 1, entry 21). The yield was reduced to 40% without the addition of ligand L8 in the presence of 10 mol % of 2,6-diethylaniline (Table 1, entry22). However, the role of 2,6-diethylaniline remains uncertain. The presence of other anilines could not improve the yield. The reaction became complex when the temperature

The Journal of Organic Chemistry

was lowered, while higher temperature could not enhance the yield. Furthermore, other additive such as silver salts and other amines could not improve the final outcome.

The reaction scope was then examined under the optimized conditions (10 mol % of CuI, 10 mol % of ligand L8, 10 mol % of 2,6-diethylaniline, 2.0 equiv of KOH, DMSO, 110 $^{\circ}$ C). The results are summarized in Scheme 2 for the evaluation of

various substituted 2-alkynylbromobenzenes 1 with pyrazoles 2. These reactions proceeded well, leading to the corresponding pyrazolo[5,1-a] isoquinolines 3 in good yields. A better result was obtained when 2-alkynylbromobenzene 1 with an electron-withdrawing aryl groups attached on the triple bond (\mathbb{R}^2 position) was employed in the reaction. Various substrates with different substituents on the aromatic ring of 2-alkynylbromobenzene 1 or attached on the pyrazole 2 worked well under the standard conditions, giving rise to the desired products in moderate to good yields. Unfortunately, only a trace amount of the corresponding products were detected when the terminal alkyne or alkyl-substituted alkynes (*n*-butyl or cyclopropyl) were used as the substrates in the transformation.

In summary, we have described a copper-catalyzed tandem reaction of 2-alkynylbromobenzene with pyrazole, providing a facile route for the synthesis of pyrazolo[5,1-a]isoquinolines. The reaction involves copper(I)-catalyzed hydroamination and C-H activation during the process.

EXPERIMENTAL SECTION

General Experimental Procedure for the Copper-Catalyzed Tandem Reaction of 2-Alkynylbromobenzene with Pyrazole. 2-Alkynylbromobenzene 1 (0.25 mmol) was added to a mixture of CuI (10 mol %), NHC L8 (10 mol %), 2,6-diethylbenzeneamine (10 mol %), pyrazole 2 (0.2 mmol), and KOH (2.0 equiv) in DMSO (2.0 mL) under nitrogen atmosphere. The mixture was heated at 110 °C. After consumption of the starting material as indicated by TLC, the reaction mixture was cooled to room temperature. The solvent was diluted by EtOAc (10 mL), washed with saturated brine (2 × 10 mL), and dried by anhydrous Na₂SO₄. Evaporation of the solvent followed by purification on silica gel (petroleum ether/ethyl acetate = 16:1) provided the product 3.

5-Phenylpyrazolo[5,1-a]isoquinoline (**3a**).^{4a} Yellow solid. Mp: 145.2–146.0 °C. Weight: 32.0 mg. Yield: 65%. ¹H NMR (400 MHz, CDCl₃): δ 8.09 (d, J = 6.9 Hz, 1H), 7.99 (s, 1H), 7.87 (d, J = 6.9 Hz, 2H), 7.72–7.70 (m, 1H), 7.52–7.48 (m, 5H), 7.07–7.02 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 140.7, 139.2, 138.3, 133.7, 129.3, 129.2, 128.8, 128.3, 127.8, 127.2, 127.0, 123.9, 123.4, 112.5, 97.7.

5-(*p*-Tolyl)pyrazolo[5,1-a]isoquinoline (**3b**). Yellow solid. Mp: 134.8–135.2 °C. Weight: 26.9 mg. Yield: 52%. ¹H NMR (400 MHz, CDCl₃): δ 8.10–8.09 (m, 1H), 7.98 (s, 1H), 7.78–7.70 (m, 3H), 7.54–7.52 (m, 2H), 7.33 (d, J = 7.8 Hz, 2H), 7.07–7.01 (m, 2H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 140.7, 139.3, 138.6, 130.9, 129.3, 129.2, 129.0, 127.8, 127.1, 127.0, 125.9, 123.9, 123.5, 112.1, 97.7, 21.4. HRMS (ESI): calcd for C₁₈H₁₅N₂ 259.1230 (M + H⁺), found 259.1247.

5-(4-Methoxyphenyl)pyrazolo[5,1-a]isoquinoline (**3c**). Yellow solid. Mp: 138.5–139.2 °C. Weight: 28.1 mg. Yield: 51%. ¹H NMR (400 MHz, CDCl₃): δ 8.08–8.07 (m, 1H), 7.99 (s, 1H), 7.83 (d, J = 8.2 Hz, 2H), 7.70–7.65 (m, 2H), 7.52–7.50 (m, 2H), 7.05–7.00 (m, 3H), 3.86 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 160.3, 140.7, 139.3, 138.2, 130.7, 129.2, 127.8, 127.0, 126.9, 126.1, 123.8, 123.4, 113.7, 111.8, 97.7, 29.6. HRMS (ESI): calcd for C₁₈H₁₅N₂O 275.1179 (M + H⁺), found 275.1185.

5-(4-Chlorophenyl)pyrazolo[5,1-a]isoquinoline (**3d**). White solid.Mp: 173.9–174.8 °C. Weight: 38.2 mg. Yield: 68%. ¹H NMR (400 MHz, CDCl₃): δ 8.10 (d, J = 7.3 Hz, 1H), 7.98 (s, 1H), 7.83 (d, J = 8.2Hz, 2H), 7.73–7.71 (m, 1H), 7.58–7.48 (m, 4H), 7.08–7.01 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 140.8, 139.3, 137.2, 135.2, 132.1, 130.7, 128.9, 128.6, 128.0, 127.5, 127.1, 124.0, 123.5, 112.6, 97.9. HRMS (ESI): calcd for C₁₇H₁₂ClN₂ 279.0684 (M + H⁺), found 279.0688.

8-Chloro-5-phenylpyrazolo[5,1-a]isoquinoline (**3e**). White solid. Mp: 114.3–115.1 °C. Weight: 36.3 mg. Yield: 65%. ¹H NMR (400 MHz, CDCl₃): δ 7.99–7.97 (m, 2H), 7.84 (d, J = 6.4 Hz, 2H), 7.66 (s, 1H), 7.52–7.45 (m, 4H), 7.02–7.82 (s, 1H), 6.9 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 141.1, 139.6, 138.7, 133.6, 133.4, 130.3, 129.5, 129.3, 128.4, 127.7, 126.2, 124.9, 122.3, 111.3, 98.1. HRMS (ESI): calcd for C₁₇H₁₂ClN₂ 279.0684 (M + H⁺), found 279.0694.

5-(4-(tert-Butyl)phenyl)pyrazolo[5,1-a]isoquinoline (**3f**). Yellow solid. Mp: 96.1–97.1 °C. Weight: 31.2 mg. Yield: 52%. ¹H NMR (400 MHz, CDCl₃): δ 8.11–8.09 (m, 1H), 8.01 (s, 1H), 7.83 (d, J = 7.8 Hz, 2H), 7.72–7.70 (m, 1H), 7.56–7.52 (m, 4H), 7.07–7.03 (m, 2H), 1.38 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 152.3, 140.8, 139.3, 138.5, 130.9, 129.2, 129.1, 127.8, 127.1, 125.3, 123.9, 123.5, 112.3, 97.8, 37.8, 31.3 HRMS (ESI): calcd for C₂₁H₂₁N₂ 301.1699 (M + H⁺), found 301.1699.

8-Chloro-5-(4-methoxyphenyl)pyrazolo[5,1-a]isoquinoline (**3g**). Yellow solid. Mp: 134.5–135.0 °C. Weight: 34.7 mg. Yield: 56%. ¹H NMR (400 MHz, CDCl₃): δ 7.98–7.96 (m, 2H), 7.81 (d, *J* = 8.7 Hz, 2H), 7.65 (m, 1H), 7.45–7.43 (m, 1H), 7.05–7.01 (m, 3H), 6.87 (s, 1H), 3.87 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 160.5, 141.0, 139.3, 138.7, 133.5, 130.7, 130.4, 127.4, 126.0, 125.7, 124.9, 122.1, 113.8, 110.6, 98.0, 29.6. HRMS (ESI): calcd for C₁₈H₁₄ClN₂O 309.0789 (M + H⁺), found 309.0796.

1-Methyl-5-phenylpyrazolo[5,1-a]isoquinoline (3h).^{4a} White solid. Mp: 130.5–131.4 °C. Weight: 23.4 mg. Yield: 45%. ¹H NMR (400 MHz, CDCl₃): δ 8.27 (d, J = 7.8 Hz, 1H), 7.85–7.80 (m, 3H),

The Journal of Organic Chemistry

7.70 (d, J = 7.3 Hz, 1H), 7.57–7.46 (m, 5H), 6.95 (s, 1H), 2.65 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 142.0, 138.5, 135.1, 134.0, 129.4, 129.3, 129.1, 128.3, 127.1, 126.0, 125.6, 123.1, 112.3, 110.0, 11.8.

2,5-Diphenylpyrazolo[5,1-a]isoquinoline (**3i**).¹³ Yellow solid. Mp: 140.8–141.5 °C. Weight: 51.4 mg. Yield: 80%. ¹H NMR (400 MHz, CDCl₃): δ 8.09 (d, J = 6.8 Hz, 1H), 7.01–7.97 (m, 3H), 7.68–7.66 (m, 1H), 7.53–7.47 (m, 5H), 7.42–7.39 (m, 2H), 7.36–7.30 (m, 3H), 7.01 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 140.7, 138.3, 133.7, 133.3, 129.7, 129.5, 129.2, 128.6, 128.1, 127.9, 127.2, 126.4, 126.3, 123.9, 123.5, 123.3, 112.5, 94.7.

5-(4-Chlorophenyl)-2-phenylpyrazolo[5,1-a]isoquinoline (**3***j*). Yellow solid. Mp: 159.8–160.2 °C. Weight: 58.8 mg. Yield: 83%. ¹H NMR (400 MHz, CDCl₃): δ 7.98–7.91 (m, 3H), 7.85 (d, J = 7.3 Hz, 2H), 7.55 (d, J = 6.9 Hz, 1H), 7.44–7.45 (m, 6H), 7.31–7.27 (m, 1H), 7.23 (s, 1H), 6.86 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 152.1, 140.5, 136.9, 134.9, 133.1, 132.0, 130.9, 130.7, 128.9, 128.5, 128.2, 127.8, 127.3, 126.3, 123.8, 123.4, 123.2, 112.4, 94.8. HRMS (ESI): calcd for C₂₃H₁₆ClN₂ 355.0997 (M + H⁺), found: 355.0990.

9-Methyl-2,5-diphenylpyrazolo[5,1-a]isoquinoline (**3k**).^{3f} Yellow solid. Mp: 125.8–126.5 °C. Weight: 40.9 mg. Yield: 61%. ¹H NMR (400 MHz, CDCl₃): δ 8.02–7.98 (m, 3H), 7.91 (s, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.51–7.49 (m, 3H), 7.43–7.39 (m, 2H), 7.33–7.31 (m, 4H), 6.99 (s, 1H), 2.53 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 152.0, 140.5, 137.5, 137.3, 133.8, 133.4, 129.6, 129.5, 129.0, 128.5, 128.1, 127.0, 126.4, 126.2, 123.9, 123.3, 112.5, 94.5. HRMS (ESI): calcd for C₂₄H₁₉N₂ 335.1543 (M + H⁺), found 335.1538.

2-(4-Methoxyphenyl)-5-phenylpyrazolo[5,1-a]isoquinoline (**3**).^{3f} Yellow solid. Mp: 128.9–129.9 °C. Weight: 40.8 mg. Yield: 58%. ¹H NMR (400 MHz, CDCl₃): δ 8.10 (d, J = 6.9 Hz, 1H), 8.02 (d, J = 6.9Hz, 2H), 7.91 (d, J = 8.7 Hz, 2H), 7.71–7.69 (m, 1H), 7.52–7.48 (m, SH), 7.29 (s, 1H), 7.02 (s, 1H), 6.95 (d, J = 8.7 Hz, 2H), 3.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.8, 152.1, 140.7, 138.4, 133.8, 129.6, 129.3, 129.1, 128.1, 127.8, 127.6, 127.1, 126.2, 123.8, 123.5, 114.5, 112.2, 94.3, 29.7. HRMS (ESI): calcd for C₂₄H₁₉N₂O 351.1492 (M + H⁺), found 351.1500.

2-(4-Methoxyphenyl)-5-(p-tolyl)pyrazolo[5,1-a]isoquinoline (**3m**). Yellow solid. Mp: 120.4–121.0 °C. Weight: 37.1 mg. Yield: 51%. ¹H NMR (400 MHz, CDCl₃): δ 8.09 (d, J = 6.9 Hz, 1H), 7.93–7.90 (m, 3H), 7.70–7.68 (m, 1H), 7.50–7.49 (m, 2H), 7.34–7.28 (m, 3H), 7.00–6.93 (m, 4H), 3.82 (s, 3H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.7, 152.0, 140.7, 139.1, 138.4, 130.9, 129.5, 129.4, 128.8, 127.8, 127.6, 127.0, 126.2, 123.7, 123.4, 118.3, 113.9, 111.8, 94.2, 29.7, 21.4. HRMS (ESI): calcd for C₂₅H₂₁N₂O 365.1648 (M + H⁺), found 365.1630.

5-(4-Chlorophenyl)-2-(4-methoxyphenyl)pyrazolo[5,1-a]isoquinoline (**3n**). Yellow solid. Mp: 143.4–144.2 °C. Weight: 46.4 mg. Yield: 60%. ¹H NMR (400 MHz, CDCl₃): δ 8.06 (d, J = 7.3 Hz, 1H), 7.94–7.87 (m, 4H), 7.65 (d, J = 7.8 Hz, 1H), 7.51–7.45 (m, 4H), 7.24 (s, 1H), 6.95–6.93 (m, 3H), 3.81 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.7, 152.1, 140.7, 137.1, 135.0, 132.2, 130.9, 129.1, 128.3, 127.9, 127.6, 127.3, 127.2, 126.0, 123.9, 123.4, 114.1, 112.1, 94.3, 29.7. HRMS (ESI): calcd for C₂₄H₁₈ClN₂O: 385.1102 (M + H⁺), found 385.1099.

8-Chloro-2-(4-methoxyphenyl)-5-phenylpyrazolo[5,1-a]isoquinoline (**3o**). Yellow solid. Mp: 163.6–164.4 °C. Weight: 35.3 mg. Yield: 46%. ¹H NMR (400 MHz, CDCl₃): δ 8.07 (s, 1H), 8.00– 7.98 (m, 2H), 7.89 (d, J = 8.7 Hz, 2H), 7.62 (d, J = 8.7 Hz, 1H), 7.52– 7.50 (m, 3H), 7.46–7.43 (m, 1H), 7.25–7.24 (m, 1H), 6.96–6.94 (m, 3H), 3.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.9, 152.4, 139.7, 138.6, 133.5, 132.8, 129.6, 129.3, 128.6, 128.3, 128.2, 127.7, 125.9, 124.8, 122.9, 114.1, 111.3, 94.7, 29.7. HRMS (ESI): calcd for C₂₄H₁₈ClN₂O 385.1102 (M + H⁺), found 385.1085.

ASSOCIATED CONTENT

Supporting Information

Copies of ¹H and ¹³C NMR spectra for the products. This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: jie wu@fudan.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support from National Natural Science Foundation of China (Nos. 21032007, 21172038) is gratefully acknowledged.

REFERENCES

(1) (a) Schreiber, S. L. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 6699.
(b) Hübel, K.; Leßmann, T.; Waldmann, H. Chem. Soc. Rev. 2008, 37, 1361.
(c) Bleicher, K. H.; Böhm, H.-J.; Müller, K.; Alanine, A. I. Nat. Rev. Drug Discovery 2003, 2, 369.
(d) Dandapani, S.; Marcaurelle, L. A. Nat. Chem. Biol. 2010, 6, 861.

(2) For selected examples, see: (a) Walsh, D. P.; Chang, Y.-T. Chem. Rev. 2006, 106, 2476. (b) Schreiber, S. L. Science 2000, 287, 1964.
(c) Burke, M. D.; Schreiber, S. L. Angew. Chem., Int. Ed. 2004, 43, 46.
(d) Schreiber, S. L. Nature 2009, 457, 153. (e) Cordier, C.; Morton, D.; Murrison, S.; Nelson, A.; O'Leary-Steele, C. Nat. Prod. Rep. 2008, 25, 719.

(3) (a) Mousseau, J. J.; Fortier, A.; Charette, A. Org. Lett. 2010, 12, 516. (b) Li, X.; Zhao, M. J. Org. Chem. 2011, 76, 8530. (c) Huple, D. B.; Chen, C.-H.; Das, A.; Liu, R.-S. Adv. Synth. Catal. 2011, 353, 1877. (d) Xu, S.; Hao, Lu; Wang, Tao; Ding, Z.; Zhan, Z. Org. Biomol. Chem. 2013, 11, 294. (e) Zhao, J.; Li, P.; Wu, C.; Chen, H.; Ai, W.; Sun, R.; Ren, H.; Larock, R. C.; Shi, F. Org. Biomol. Chem. 2012, 10, 1922. (f) Huang, P.; Yang, Q.; Chen, Z.; Ding, Q.; Xu, J.; Peng, Y. J. Org. Chem. 2012, 77, 8092 and references cited therein.

(4) (a) Li, S.; Wu, J. Org. Lett. 2011, 13, 712. (b) Chen, Z.; Wu, J. Org. Lett. 2010, 12, 4856. (c) Liu, H.; Liu, G.; Qiu, G.; Pu, S.; Wu, J. Tetrahedron 2013, 69, 1476 and references cited therein.

(5) For selected examples, see: (a) Montgomery, J. Angew. Chem., Int. Ed. 2004, 43, 3890. (b) Enders, D.; Grondal, C.; Hüttl, M. R. M. Angew. Chem., Int. Ed. 2007, 46, 1570.

(6) Luo, Y.; Wu, J. Org. Lett. 2012, 14, 1592 and references cited therein.

(7) For selected examples, see: (a) Tang, Z.-Y.; Hu, Q.-S. Adv. Synth. Catal. 2006, 348, 846. (b) Cao, H.; McNamee, L.; Alper, H. Org. Lett. 2008, 10, 5281. (c) Ackermann, L.; Barfüßer, S.; Potukuchi, H. K. Adv. Synth. Catal. 2009, 351, 1064. (d) Halland, N.; Nazaré, M.; R'kyek, O.; Alonso, J.; Urmann, M.; Lindenschmidt, A. Angew. Chem., Int. Ed. 2009, 48, 6879. (e) Siebeneicher, H.; Bytschkov, I.; Doye, S. Angew. Chem., Int. Ed. 2003, 42, 3042. (f) Ackermann, L. Org. Lett. 2005, 7, 439. (g) Panteleev, J.; Zhang, L.; Lautens, M. Angew. Chem., Int. Ed. 2011, 50, 9089. (h) Levi, Z. U.; Tilley, T. D. J. Am. Chem. Soc. 2009, 131, 2796.

(8) (a) Nishino, M.; Hirano, K.; Tetsuya, S.; Miura, M. Angew. Chem., Int. Ed. 2013, 52, 4457. (b) Zhao, D.; Wang, W.; Yang, F.; Lan, J.; Yang, L.; Gao, G.; You, J. Angew. Chem., Int. Ed. 2009, 48, 3296.
(c) Zou, L.; Mottweiler, J.; Priebbenow, D. L.; Wang, J.; Stubenrauch, J. A.; Bolm, C. Chem.—Eur. J. 2013, 19, 3302. (d) Nishino, M.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2012, 51, 6993.
(e) Hirano, K.; Miura, M. Chem. Commun. 2012, 48, 10704. (f) Qin, X.; Feng, B.; Dong, J.; Li, X.; Xue, Y.; Lan, J.; You, J. J. Org. Chem. 2012, 77, 7677. (g) Mao, Z.; Wang, Z.; Xu, Z.; Huang, F.; Yu, Z.; Wang, R. Org. Lett. 2012, 14, 3854. (h) Fan, S.; Chen, Z.; Zhang, X. Org. Lett. 2012, 14, 4950.

(9) Verma, A. K.; Kesharwani, T.; Singh, J.; Tandon, V.; Larock, R. C. Angew. Chem., Int. Ed. 2009, 48, 1138.

(10) For selected examples, see: (a) Cristau, H.; Cellier, P. P.; Spindler, J.; Taillefer, M. Eur. J. Org. Chem. 2004, 695. (b) Kumar, S.; Ila, H.; Junjappa, H. J. Org. Chem. 2009, 74, 7046. (c) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 6954. (d) Meldal, M.; Tornøe, W. C. Chem. Rev. 2008, 108, 2952. (11) (a) Do, H.; Khan, R. M. K.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 15185. (b) Liao, Q.; Zhang, L.; Li, S.; Xi, C. Org. Lett. 2011, 13, 228.

(12) (a) Verma, A. K.; Joshi, M.; Singh, V. P. Org. Lett. 2011, 13, 1630. (b) Joshi, M.; Tiwari, R.; Verma, A. K. Org. Lett. 2012, 14, 1106.
(c) Verma, A. K.; Jha, R. R.; Chaudhary, R.; Tiwari, R. K.; Reddy, K. S. K.; Danodia, A. J. Org. Chem. 2012, 77, 8191. (d) Tsuchimoto, T.; Aoki, K.; Wagatsuma, T.; Suzuki, Y. Eur. J. Org. Chem. 2008, 4035.
(13) Chen, Z.; Yang, X.; Wu, J. Chem. Commun. 2009, 23, 3469.